Homework 15.1

Two points each; total

Exercises: 1, 2, 3, 5, 7, 8, 10, 11, 12, 13, 15
Problems: 1, 2, 4, 5
E. 1 It is a real image of the circular sun itself.
E. 2 The image would not be focused any longer. According to the lens equation $\frac{1}{o}+\frac{1}{i}=\frac{1}{f}$, if you change o, you also need to change i , for the image to be in focus again.
E. 3 The 2.0-diopter lens has the shorter focal length.
E. 5 The lens equation $\frac{1}{O}+\frac{1}{i}=\frac{1}{f}$ gives 0.5 cm as the focal length of the lens when the image and object distances are both 1.0 cm .
E. 7 Their depths of focus are very small.
E. 8 You want the aperture as large as possible, and the shutter speed fast.
E. 10 For this set-up the aperture is very small. This has two effects: 1) Little light passes through, which requires a long exposure time. 2) The depth of focus increases for small apertures.
E. 11 Reducing the size of your eye's aperture increases its depth of focus.
E. 12 A small iris means a small aperture, which increases the depth of focus.
E. 13 In this case, the iris is large, thus, the aperture is large, and thus, there is a little depth of focus.
E. 15 The lower magnification $2 x$ glass has the longer focal length.
P. 135 mm . Rays from far away objects (basically) come in parallel, so the rays get focused at the focal distance, f.

Could also use lens equation, $\frac{1}{o}+\frac{1}{i}=\frac{1}{f}$ with $\mathrm{o}=\infty$ (or very large number) $\rightarrow \mathrm{i}=35 \mathrm{~mm}$.

P2. Lens equation: $\frac{1}{O}+\frac{1}{i}=\frac{1}{f} \rightarrow \mathrm{i}=35.6 \mathrm{~mm}$ (convert m to mm).
P. 4 Lens equation: $\frac{1}{O}+\frac{1}{i}=\frac{1}{f} \rightarrow \mathrm{f}=15 \mathrm{~cm}$.
P. 5 Lens equation: $\frac{1}{o}+\frac{1}{i}=\frac{1}{f} \rightarrow o=5 \mathrm{~m}$. (convert units).

